

Municipality of Anchorage

3000 Arctic Blvd• Anchorage, Alaska 99503-3898 • Telephone (907) 564-2799 • Fax (907) 786-5681 http://www.muni.org • http://www.awwu.biz

Anchorage Water & Wastewater Utility

Board Chair Tim Sullivan

August 8, 2014

Director, Office of Water U.S. Environmental Protection Agency, Region 10 NPDES Compliance Unit 1200 Sixth Avenue, OW-133 Seattle, Washington 98101

Subject:

Whole Effluent Toxicity Testing Results

2nd Quarter 2014

NPDES Permit No. AK-002255-1

The John M. Asplund Water Pollution Control Facility permit requires that quarterly whole effluent toxicity (WET) testing reports be submitted with the discharge monitoring report (DMR) for the month following the test month. The enclosed report outlines test results for the short-term chronic toxicity test conducted for the second quarter of 2014 (24-hour composite sample collected June 11th, 2014). Effluent flow on the sampling day for this WET test sample was 27.48 MGD.

The permit requires that testing continue with the most sensitive species after an annual screening using three species. This quarter's test used the most sensitive species as demonstrated by the screening of all three species in first quarter 2014. The WET testing consisted of a fertilization test using the purple sea urchin (*Strongylocentrotus purpuratus*). The permit toxicity trigger of 143TUc was not exceeded in this test with a reported chronic toxicity of 35.7 TUc.

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

I can be contacted at (907) 564-2799 or <u>mailto:David.Persinger@awwu.biz</u> should you have any questions.

Sincerely,

David Persinger, P.E.

Director, Treatment Division - AWWU

Cc:

Alaska Department of Environmental Conservation, Division of Water

Rob Gustafson, Water Quality Supervisor, AWWU

Jeff Axman, Acting Superintendent, John M. Asplund WPCF, AWWU

Enclosure:

Pacific EcoRisk, WET test report

Community, Security, Prosperity

8/13/18/1

		!
		!
		:
		:
		; ;
	•	:

Gary Lawley Kinnetic Laboratories, Inc. 1102 West 7th Avenue Anchorage, AK 99501

July 11, 2014

Gary,

I have enclosed our report "NPDES Compliance Toxicity Testing of the City of Anchorage John M. Asplund Water Pollution Control Facility Effluent". This evaluation consisted of performing the US EPA echinoderm sperm fertilization short-term chronic toxicity test with the purple urchin, Strongylocentrotus purpuratus, using an effluent sample collected June 11, 2014. A summary of the results of this testing follows:

Chronic Effects of Anchorage Effluent on Purple Urchin Sperm Fertilization There were no significant reductions in echinoderm sperm fertilization at the effluent concentrations tested; the NOEC was 2.8% effluent, resulting in 35.7 TUc.

If you have any questions regarding the performance and interpretation of this test, please contact my colleagues Dr. Scott Ogle or Alison Briden at (707) 207-7760.

Sincerely,

Stevi Vasquez 2014.07.14 09:46:53 -08'00'

Stevi Vasquez Aquatic Ecotoxicologist

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 22580.

NPDES Compliance Toxicity Testing of the City of Anchorage John M. Asplund Water Pollution Control Facility Effluent

Sample collected June 11, 2014

Performed For:

Kinnetic Laboratories, Inc. 1102 West 7th Avenue Anchorage, AK 99501

Prepared By:

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534

July 2014

NPDES Compliance Toxicity Testing of the City of Anchorage John M. Asplund Water Pollution Control Facility Effluent

Sample collected June 11, 2014

Table of Contents

		rage
	JCTION	
2. TOXICIT	Y TEST PROCEDURES	1
2.1 Receip	t and Handling of the Effluent Sample	1
2.2 Echino	derm Fertilization Toxicity Testing with Strongylocentrotus purpuratus	1
	ference Toxicant Testing of the Purple Urchin Embryos	
	· · · · · · · · · · · · · · · · · · ·	
	of Anchorage Effluent on Purple Urchins	
	ference Toxicant Toxicity to the Purple Urchin	
	RY AND CONCLUSIONS	
	C Summary	
	Appendices	
Appendix A	Chain-of-Custody Record for the Collection and Delivery of the Anchorage Effluent Sample	
Appendix B	Test Data and Summary of Statistics for the Evaluation of the Chronic Toxici Anchorage Effluent to Purple Urchin Sperm Fertilization	ty of
Appendix C	Test Data and Summary of Statistics for the Reference Toxicant Evaluation of Purple Urchin Sperm	f the

1. INTRODUCTION

Kinnetic Laboratories, Inc., (Kinnetic) has contracted Pacific EcoRisk (PER) to perform an evaluation of the chronic toxicity of effluent collected from the City of Anchorage John M. Asplund Water Pollution Control Facility (Anchorage). This evaluation consisted of the US EPA echinoderm sperm fertilization short-term chronic toxicity test with the purple urchin, *Strongylocentrotus purpuratus*. This test was performed using an effluent sample that was collected on June 11, 2014. In order to assess the sensitivity of the test organisms to toxic stress, a reference toxicant test was also performed. This report describes the performance and results of these tests.

2. TOXICITY TEST PROCEDURES

The methods used in conducting this toxicity testing followed the guidelines established by the EPA manuals "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms " (EPA/600/R-95/136).

2.1 Receipt and Handling of the Effluent Sample

On June 11, a sample of Anchorage effluent was collected into an appropriately cleaned sample container; this sample was shipped via overnight delivery, on ice and under chain-of-custody, to the PER testing facility in Fairfield, CA. Upon receipt at the testing laboratory, aliquots of the sample were collected for determination of initial water quality characteristics (Table 1), after which the remainder of the sample was stored at 0-6°C, except when being used to prepare the test solutions. The chain-of-custody record for the collection and delivery of the sample are provided in Appendix A.

Table 1. Initial water quality characteristics of the Anchorage effluent sample.									
Sample Collection Date	Sample Receipt Date	Sample ID	Temp (°C)	pН	D.O (mg/L)	Salinity (ppt)	Conductivity (µS/cm)	Total Ammonia (mg/L N)	
6/11/14	6/12/14	MOA14TOX004	1.7	7.24	7.5	0.4	726	25.1	

2.2 Echinoderm Fertilization Toxicity Testing with Strongylocentrotus purpuratus

The short-term echinoderm sperm cell fertilization test consists of exposing purple sea urchin or sand dollar sperm to a series of effluent dilutions, after which the subsequent effects on successful fertilization of the eggs are determined. The specific procedures used in this test are described below.

The Lab Water Control medium for this test consisted of filtered (1 μ m) seawater (collected from the UC Granite Canyon Marine Lab). The Lab Water Control medium and effluent sample were used to prepare test solutions at concentrations of 0.175, 0.35, 0.7, 1.4, and 2.8% effluent. Routine water quality characteristics (pH, D.O., and salinity) were measured for each test solution prior to use in this test.

Sperm and eggs were generated from gravid adult purple urchins, *S. purpuratus*. The gravid adult urchins were obtained from a commercial supplier (David Gutoff, San Diego, CA). Upon receipt at the PER lab, the urchins were held in tanks of aerated, filtered seawater at 12°C. Spawning of the urchins was induced by injection with 0.5 M KCl, followed by vigorous shaking of the animals to stimulate gamete release, as per EPA guidelines. The gametes from each spawning individual were collected and examined microscopically; the gametes exhibiting the best quality (as determined from morphology and trial fertilization) were pooled to provide a composite of high quality sperm and a composite of high quality eggs.

There were four replicates at each test treatment. Each test replicate consisted of a 30-mL glass vial to which 5 mL of appropriate test solution was added. The test was initiated with the inoculation of an appropriate quantity of sperm into each replicate vial to achieve a final sperm-to-egg ratio of 500:1. After a 20-min exposure period, ~1000 eggs were inoculated into each vial. After an additional 20-min exposure, the test was terminated with all of the test embryos being fixed by the addition of 1.0 mL of 5% glutaraldehyde.

The contents of each preserved test vial were subsequently examined microscopically to determine the percentage of embryos exhibiting complete fertilization. The resulting percentage fertilization data for each test treatment were analyzed in order to characterize any statistically significant reductions in successful fertilization that may have been caused by the effluent; determination of the key statistical endpoints were made using the CETIS® statistical software.

2.2.1 Reference Toxicant Testing of the Purple Urchin Embryos

In order to assess the sensitivity of the urchin sperm to toxicant stress, a reference toxicant test was performed concurrently with the effluent test. The reference toxicant test was performed similarly to the effluent test, but used test solutions consisting of Lab Water Control medium spiked with KCl at concentrations of 0.25, 0.5, 1, 2, and 4 g/L KCL. The resulting test response data were analyzed to determine key dose-response point estimates (e.g., EC50); all statistical analyses were made using the CETIS® software. These response endpoints were then compared to the "typical response" range established by the mean \pm 2 SD of the point estimates generated by the reference toxicant test database.

3. RESULTS

3.1 Effects of Anchorage Effluent on Purple Urchins

The results of this test are summarized below in Table 2. The normal embryo fertilization NOEC was 2.8% effluent, resulting in 35.7 TUc (where TUc = 100/NOEC). The test data and summary of statistical analyses for this test are presented in Appendix B.

Table 2. Effects of Anchorage effluent on echinoderm (purple urchin) sperm fertilization.						
Effluent Treatment	Mean % Successful Fertilization					
Lab Control (Filtered Seawater)	97.5					
0.175%	99.0					
0.35%	99.5					
0.7%	99.3					
1.4%	98.5					
2.8%	98.3					
Summary of	Key Statistics					
NOEC =	2.8% effluent					
TUc (where TUc = 100/NOEC) =	35.7					
EC15 =	>2.8% effluent ^a					
EC25 =	>2.8% effluent					
EC40 =	>2.8% effluent					
EC50 =	>2.8% effluent					

a - Due to the absence of significant impairment, the BC point estimates could not be calculated, but can be determined by inspection to be >2.8% effluent.

3.1.1 Reference Toxicant Toxicity to the Purple Urchin

The results of this test are summarized below in Table 3. The EC50 for this test was consistent with the "typical response" range established by the reference toxicant database for this species, indicating that these organisms were responding to toxic stress in a typical and consistent fashion. The test data & summary of statistical analyses for this test are presented in Appendix C.

Table 3. Reference toxicant testing: Effe	cts of KCl on echinoderm sperm fertilization.						
KCl Treatment (g/L)	Mean % Successful Fertilization						
Lab Control	99.8						
0.25	98.3						
0.5	93.3*						
1	92.7*						
2	0*						
4	0*						
Summary	Summary of Key Statistics						
EC50 =	1.30 g/L KCl						

^{* -} The response at this test treatment was significantly less than the Lab Control treatment response at p < 0.05.

4. SUMMARY AND CONCLUSIONS

Chronic Effects of Auchorage Effluent on Purple Urchin Sperm Fertilization

There were <u>no</u> significant reductions in successful fertilization at the effluent concentrations tested; the NOEC was 2.8% effluent, resulting in 35.7 TUc.

Purple Urchin Test Endpoint =	Mean % Successful Fertilization
NOEC = 2.8% effluent	TUc (= 100/NOEC) = 35.7 TUc

4.1 QA/QC Summary

Test Conditions – All test conditions (pH, D.O., temperature, etc.) were within acceptable limits. All analyses were performed according to laboratory Standard Operating Procedures.

Negative Control – The test organism responses at the Lab Control treatments were within acceptable limits.

Positive Control – The reference toxicant test results were consistent with the "typical response" ranges established by the reference toxicant test database, indicating that these test organisms were responding to toxic stress in a typical fashion.

Concentration Response Relationships – The concentration-response relationships for this these tests were evaluated as per EPA guidelines (EPA-821-B-00-004), and were determined to be acceptable.

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Anchorage Effluent Sample

KINNETIC LABORATORIES, INC. CHAIN OF CUSTODY RECORD

LABORATORY:		FROM		4				
ATTN: Scott Ogle 707-207- Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534	Kinnetic I 704 W. 2 Anchoraç	Kinnetic Laboratories, Inc. 704 W. 2nd Ave. Anchorage, AK 99501 Attn: Mark Savoie/Gary Lawley 907-276.6178						
Required Completion Date:	P.O. #:Al	K14-1001		KLI	l Proj. #: 516.03			
Static renewal chronic testic procedures in accordance waters to Marine and Estud boundary concentration of ((0.35 and 0.175). Reference	with <i>Short Teri</i> <i>rine Organism</i> 0.70%, and tw	m Methods is, (EPA/600 io concentra	i <i>for Estimat</i> 0/4-87/028) ations abov	<i>ting the Chi</i>). At least f re (1.4 and :	<i>ronic Tox</i> ive dilutic 2.8%) an	<i>cicity of Effluents an</i> one must be tested,	d Receiving including a ZID	
		Preser	r vative: No	ne (4° C)		Type of Containe 1 gallon cubitaine		
SAMPLE IDENTIFICATION #	NO. OF CONTAINERS		SAMPLE DATE		E TIME	CONDITION UPON RECEIPT	ASSIGNED LABORATORY NUMBER	
MOA14TOX004	1	611	14 0900					
		_		<u> </u>				
					<u></u>			
DATA REPORTS MUST INCLUD EXTRACTION, DATE OF ANALY	SIS, ANALYTICA	L RESULTS, J	ID NUMBER AND SIGNATI	, ANALYTICA UNE OF QA F	IL METHOE REVIEWER), DETECTION LIMIT, D	MTE OF	
Please return all completed origina	teranicular large and the retirement				There are		as rimas is que papa gra-	
RELINQUISHED BY:	DATE AN	ND TIME	TRANSPOR		RECEIV		DATE AND TIME	
JAXW. Smill	- 6/11	14 1139	FEDEX 4		1321	2	4/11/14 11:39	
RELINGUISHED BY:		NO TIME	THANSPOR		RECEIV	EDBY;	DATE AND TIME	
397		14 11:53				The second secon	<u> </u>	
PELINQUISHED BY:	DATE AN	ND TIME	TRANSPOR	TED BY:	RECEIV	ED BY:	DATE AND TIME	
il		'						

SAMPLED BY (NAME/SIGNATURE):

Appendix B

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of Anchorage Effluent to Purple Urchin Sperm Fertilization

Report Date: Test Code: 16 Jun-14 16:07 (p 1 of 1) 57612 | 08-6424-8933

Echinoid Fert	ilization Test						· · · · · · · · · · · · · · · · · · ·		.,,	Paci	fic EcoRisk
Batch ID: Start Date: Ending Date: Duration:	01-0824-2867 12 Jun-14 17:18 16 Jun-14 17:58 4d 1h		Test Type: Protocol: Species: Source:	Fertilization EPA/600/R-95 Strongylocentr Gutoff		tus	Dif	alyst: uent: ne: e:	Alison Briden Filtered Seawa Not Applicable N/A		
-	10-8049-2128 11 Jun-14 09:00 12 Jun-14 10:50 32h (1.7°C)		Code: Material: Source: Station:	EFF Effluent Kinnetic Labor MOA14TOX00	•			ent: oject:	Kinnetic Labs 22580		
Comparison S	-								. •		
Analysis ID 02-0945-9842	Endpoint Fertilization Rat	~	NOEL 2.8	LOEL >2.8	TOEL NA	PMSD 3.08%	TU 35.71	Meth	ett Multiple Cor	nnarioon To	
UZ-US40-804Z	reimization Rat		2.0	>2.0	INA	3.00%	30.71	Durin	er mainbie col	npanson 16	31
Fertilization R	ate Summary				•						
	Control Type	Coun		95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	%Effect
	Lab Water Contr		0.975	0.973	0.977	0.97	0.98	0.002		0.59%	0.0%
0.175		4	0.99	0.987	0.993	0.98	1	0.004		0.83%	-1.54%
0.35		4	0.995	0,991	0.999	0.98	1	0.005		1.01%	-2.05%
0.7		4	0.993	0.989	0.996	0.98	1	0.004		0.97%	-1.79%
1.4		4	0.985	0.983	0.987	0.98	0.99	0.002		0.59%	-1.03%
2.8		4	0.983	0.975	0.99	0.96	1	0.010	0.0206	2.1%	-0.77%
Fertilization R	ate Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
0	Lab Water Contr	0.97	0.98	0.98	0.97						
0.175		0.99	0.99	1	0.98						
0.35		1	0.98	1	1						
0.7		0.99	1	.1	0.98						
1.4		0.99	0.98	0.98	0.99						
2.8		0.96	0.97	1	1						
Fertilization R	ate Binomials										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	•					
	Lab Water Contr				97/100						
0.175		99/10			98/100						
0.35		100/10			100/100						
0.7		99/100			98/100						
1,4		99/100			99/100						
2.8		96/100			100/100						

Report Date: Test Code: 16 Jun-14 15,52 (p f of 2) 57612 | 08-6424-8933

							Test	.		57612 00	
Echinold Fe	rtillzation Test			···· · · · · · · · · · ·						Pacif	ic EcoRisk
Analysis ID: Analyzed:	02-0945-9842 16 Jun-14 15:49		•	tilization Rat ametric-Con		ments		S Version: ial Results:	CETISví: Yes	8.5	
Data Transfo		Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL.	LOEL	TOEL	TU
Angular (Corr		NA	C>T	NA	NA		3.08%	2.8	>2.8	NA	35.71
Dunnett Mul	tiple Comparison	Test				····		······································			
Control	vs C-%	•	Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Water Co			-1.83	2.41	0.079 6	0.9985	CDF		ficant Effect		
	0.35		-2.6	2.41	0.079 6	0.9999	CDF	_	ficant Effect		
	0.7		-2.21	2.41	0.079 6	0.9995	CDF	-	ficant Effect		
	1.4		-1.13	2.41	0.079 6	0.9879	CDF		ficant Effect		
	2.8		1.19	2.41	0.079 6	0.9899	CDF	_	ficant Effect		
ANOVA Table	e	· : · · ·	·····						······································		
Source	Sum Squa	ires	Mean Squ	iare	DF	F Stat	P-Value	Decision((a:5%)		
Between	0.0184381	2	0.0036876	323	5	1.72	0.1810	Non-Signi	ficant Effect		
Error	0.0385929	6	0,0021440)54	18						
Total	0.0570310	8		·	23	-					•
Distributions	al Tests			and the same of th	***************************************						
Attribute	Test			Test Stat	Critical	P-Value	Decision((α:1%)			
\/											
Variances	Bartlett Ed	quality of V	ariance	6.77	15.1	0.2383	Equal Var	iances			
Distribution		quality of V Vilk W Non		6.77 0.963	15.1 0.884	0.2383 0.4917	Equal Var Normal Di				
Distribution											
Distribution	Shapiro-V							stribution Max	Std Err	CV%	%Effect
Distribution Fertilization	Shapiro-V Rate Summary	Vilk W Non	mailty	0,963	0.884	0.4917	Normal Di	stribution	Std Err 0.00289	CV% 0.59%	%Effect
Distribution Fertilization C-%	Shapiro-V Rate Summary Control Type	Vilk W Non	mailty Mean	0,963 95% LCL	0.884 95% UCL	0.4917 Median	Normal Di	stribution Max	 		
Distribution Fertilization C-% 0	Shapiro-V Rate Summary Control Type	Count	Mean 0.975	0.963 95% LCL 0.966	95% UCL 0.984	0.4917 Median 0.975	Min 0.97	Max 0.98	0.00289	0.59%	0.0%
Distribution Fertilization C-% 0 0.175	Shapiro-V Rate Summary Control Type	Count	Mean 0.975 0.99	0.963 95% LCL 0.966 0.977	95% UCL 0.984 1	0.4917 Median 0.975 0.99	Min 0.97 0.98	Max 0.98	0.00289 0.00408	0.59% 0.83%	0.0% -1.54%
Distribution Fertilization C-% 0 0.175 0.35	Shapiro-V Rate Summary Control Type	Count 4 4	Mean 0.975 0.99 0.995	0.963 95% LCL 0.966 0.977 0.979	95% UCL 0.984 1	0.4917 Median 0.975 0.99	Min 0.97 0.98 0.98	Max 0.98 1	0.00289 0.00408 0.005	0.59% 0.83% 1.01%	0.0% -1.54% -2.05%
Distribution Fertilization C-% 0 0.175 0.35 0.7	Shapiro-V Rate Summary Control Type	Count 4 4 4 4	Mean 0.975 0.99 0.995 0.993	0.963 95% LCL 0.966 0.977 0.979 0.977	95% UCL 0.984 1 1	0.4917 Median 0.975 0.99 1 0.995	Min 0.97 0.98 0.98	Max 0.98 1	0.00289 0.00408 0.005 0.00479	0.59% 0.83% 1.01% 0.97%	0.0% -1.54% -2.05% -1.79%
Distribution Fertilization C-% 0 0.175 0.35 0.7 1.4 2.8	Shapiro-V Rate Summary Control Type	Count 4 4 4 4 4 4	Mean 0.975 0.99 0.995 0.993 0.985 0.983	95% LCL 0.966 0.977 0.979 0.977 0.976	95% UCL 0.984 1 1 1 0.994	0.4917 Median 0.975 0.99 1 0.995 0.985	Min 0.97 0.98 0.98 0.98 0.98	Max 0.98 1 1 1 0.99	0.00289 0.00408 0.005 0.00479 0.00289	0.59% 0.83% 1.01% 0.97% 0.59%	0.0% -1.54% -2.05% -1.79% -1.03%
Distribution Fertilization C-% 0 0.175 0.35 0.7 1.4 2.8	Shapiro-V Rate Summary Control Type Lab Water Contr	Count 4 4 4 4 4 4	Mean 0.975 0.99 0.995 0.993 0.985 0.983	95% LCL 0.966 0.977 0.979 0.977 0.976	95% UCL 0.984 1 1 1 0.994	0.4917 Median 0.975 0.99 1 0.995 0.985	Min 0.97 0.98 0.98 0.98 0.98 0.98	Max 0.98 1 1 1 0.99 1	0.00289 0.00408 0.005 0.00479 0.00289	0.59% 0.83% 1.01% 0.97% 0.59%	0.0% -1.54% -2.05% -1.79% -1.03%
Distribution Fertilization C-% 0 0.175 0.35 0.7 1.4 2.8 Angular (Cor	Shapiro-W Rate Summary Control Type Lab Water Contr	Count 4 4 4 4 4 4 Count Count	Mean 0.975 0.99 0.995 0.993 0.985 0.983	95% LCL 0.966 0.977 0.979 0.977 0.976 0.95	95% UCL 0.984 1 1 0.994	Median 0.975 0.99 1 0.995 0.985 0.985	Min 0.97 0.98 0.98 0.98 0.98 0.98	Max 0.98 1 1 1 0.99	0.00289 0.00408 0.005 0.00479 0.00289 0.0103	0.59% 0.83% 1.01% 0.97% 0.59% 2.1%	0.0% -1.54% -2.05% -1.79% -1.03% -0.77%
Distribution Fertilization C-% 0 0.175 0.35 0.7 1.4 2.8 Angular (Cor	Shapiro-W Rate Summary Control Type Lab Water Control rrected) Transford Control Type	Count 4 4 4 4 4 4 Count Count	Mean 0.975 0.99 0.995 0.993 0.985 0.983	95% LCL 0.966 0.977 0.979 0.977 0.976 0.95	95% UCL 0.984 1 1 0.994 1	0.4917 Median 0.975 0.99 1 0.995 0.985 0.985	Min 0.97 0.98 0.98 0.98 0.98 0.98	Max 0.98 1 1 1 0.99 1	0.00289 0.00408 0.005 0.00479 0.00289 0.0103	0.59% 0.83% 1.01% 0.97% 0.59% 2.1%	0.0% -1.54% -2.05% -1.79% -1.03% -0.77%
Distribution Fertilization C-% 0 0.175 0.35 0.7 1.4 2.8 Angular (Cor	Shapiro-W Rate Summary Control Type Lab Water Control rrected) Transford Control Type	Count 4 4 4 4 4 4 Count Count	Mean 0.975 0.99 0.995 0.993 0.985 0.983 nary Mean 1.41	95% LCL 0.968 0.977 0.979 0.977 0.976 0.95	95% UCL 0.984 1 1 0.994 1	0.4917 Median 0.975 0.99 1 0.995 0.985 0.985 Median 1.41	Min 0.97 0.98 0.98 0.98 0.98 0.98 0.98 1.4	Max 0.98 1 1 0.99 1 Max 1.43	0.00289 0.00408 0.005 0.00479 0.00289 0.0103 Std Err 0.00929	0.59% 0.83% 1.01% 0.97% 0.59% 2.1% CV%	0.0% -1.54% -2.05% -1.79% -1.03% -0.77% %Effect 0.0%
Distribution Fertilization C-% 0 0.175 0.35 0.7 1.4 2.8 Angular (Cor C-% 0 0.175	Shapiro-W Rate Summary Control Type Lab Water Control rrected) Transford Control Type	Count 4 4 4 4 4 Count Count 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Mean 0.975 0.99 0.995 0.993 0.985 0.983 nary Mean 1.41 1.47	95% LCL 0.968 0.977 0.979 0.977 0.976 0.95 96% LCL 1.38 1.41	95% UCL 0.984 1 1 0.994 1 95% UCL 1.44 1.53	0.4917 Median 0.975 0.99 1 0.995 0.985 0.985 Median 1.41 1.47	Min 0.97 0.98 0.98 0.98 0.98 0.98 1.44 1.43	Max 0.98 1 1 0.99 1 Max 1.43 1.52	0.00289 0.00408 0.005 0.00479 0.00289 0.0103 Std Err 0.00929 0.0188	0.59% 0.83% 1.01% 0.97% 0.59% 2.1% CV% 1.32% 2.55%	0.0% -1.54% -2.05% -1.79% -1.03% -0.77% %Effect 0.0% -4.24%
Distribution Fertilization C-% 0 0.175 0.35 0.7 1.4 2.8 Angular (Cor C-% 0 0.175 0.35	Shapiro-W Rate Summary Control Type Lab Water Control rrected) Transford Control Type	Count 4 4 4 4 Count Count 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Mean 0.975 0.99 0.995 0.993 0.985 0.983 mary Mean 1.41 1.47 1.5	95% LCL 0.968 0.977 0.979 0.977 0.976 0.95 96% LCL 1.38 1.41 1.42	95% UCL 0.984 1 1 0.994 1 95% UCL 1.44 1.53 1.57	0.4917 Median 0.975 0.99 1 0.995 0.985 0.985 Median 1.41 1.47 1.52	Min 0.97 0.98 0.98 0.98 0.98 0.98 1.44 1.43 1.43	Max 0.98 1 1 0.99 1 Max 1.43 1.52 1.52	0.00289 0.00408 0.005 0.00479 0.00289 0.0103 Std Err 0.00929 0.0188 0.023	0.59% 0.83% 1.01% 0.97% 0.59% 2.1% CV% 1.32% 2.55% 3.07%	0.0% -1.54% -2.05% -1.79% -1.03% -0.77% %Effect 0.0% -4.24% -6.02%

Echinoderm Fertilization Toxicity Test Data Sheet

Client:	Kinnetic Anchorage	Test Start Date:	6/12/14
Test Material:	Effluent	Test End Date:	6/12/14
Test Species:	S. purpuratus	Enumeration Date:	4/18/14
Test ID #:	57612	Investigator:	AB
- ' "	44500	<u>" </u>	

Project #: 225
Sample Salinity adjusted with : ____

Sample Salinity	adjusted w	itn:			
Concentration	Replicate	Number of Fertilized Eggs	Number of Unfertilized Eggs	Total Number of Eggs	Percent Fertilization
	А	97	3	100	97
Control	В	18	2	100	98
	С	98	2:	100	98
	D	97	3	100	97
	А	99	1	100	99
0.175%	В	99	J	100	99
0.17570	C	100	0	100	100
	D	98	2_	100	98
·	Α	100	0	100	100
0.35%	В	98	2	100	98
U.33 70	С	100	8	100	100
	D	100	0	100	100
	A	99	1	100	99
0.7%	В	100	D	100	100
0.7 70	С	100	0	100	100
	D	98	2	100	98
······································	А	99	1	100	99
1.4%	В	98	2	100	98
3.4470	С	18	2_	100	98
	D	99	1	100	99
	A	96	4	100	96
2.8%	В	97	3	100	97
4,8%	С	100	0	100	100
	D	100	0	100	100

Echinoderm Fertilization Toxicity Test Water Chemistry Data

Client: Test Material:	Kinnetic Anchorage Effluent		Organism Log#: _ Organism Supplier:	8301 Guto	Age:_	N/A
Test Species	S. purpuratus		Control/Diluent:		TSW	
Test ID#:	57612 Project #:	22580	Test Date:	6/12/14	Randomization:	-
Sample Salinity adju	usted with :					

Treatment	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	12-5	7.73	8.7	33.0	Date: 6/12/14
0.175%	12.5	7.78	8.7	33.4	Sample ID: 35427
0.35%	12.5	7.78	8.7	33.3	Test Solution Prep:
0.7%	12.5	7.79	8.6	33.2	New WQ: SVV
1.4%	12.5	7.78	8.6	33.0	Innoculation Time: 1715
2.8%	12.5	7.77	8.7	32.6	Innoculation Signoff:
Meter ID	82A	PH21	ROII	EL04	

Echinoderm Fertilization Toxicity Test Data Sheet

Client:	Kinnetic Anchorage	Test Start Date:	6/12/14
Test Material:	Effluent	Test End Date:	6/12/14
Test Species:	S. purpuratus	Enumeration Date:	6/13/14
Test ID #:	57612	Investigator:	MB
Project #:	22580	Effluent Salinity Adjusted with:	-

Treatment Replicate		Number of Fertilized Eggs	Number of Unfertilized Eggs	Total Number of Eggs	Percent Fertilization
	A	97	3	100	97
Lab Water	В	98	2	100	98
Control	С	98	2	100	98
	D	97	3	100	97
	A	Ø	100	100	0
Sperm Blank (eggs only) Negative Lab	В	0	100	100	0
Water Control	С	0	100	100	0
	D	. 0	100	100	0
G	Α	0	100	100	0
Sperm Blank (eggs only) Negative Effluent Control (11-2% Effluent)	В	0	100	100	0
	С	0	100	100	0
MF 2.8%	D	0	100	100	0

AUG 1 1 2014

Appendix C

Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Purple Urchin Sperm

Report Date: Test Code: 16 Jun-14 15:33 (p 1 of 1) 57613 | 09-1969-9393

								•	·			
Echinoid Fe	rtilization Test										Pacif	ic EcoRis
Bạtch ID:	01-0590-6021	Te	st Type:	Fertilization				Analyst:	Alis	on Briden		
Start Date:	12 Jun-14 17:15	e Pro	tacal:	EPA/600/R-95/	136 (1995)			Diluent:	Filte	ered Seawat	ter	
Ending Date	: 12 Jun-14 17:55	Sp.	ecies:	Strongylocentro	otus purpura	itus		Brine:	Not	Applicable		
Duration:	40m	So	игсе:	Gutoff				Age:	N/A			
Sample ID:	17-4622-1108	Co	de:	KCI		······		Client:	Ref	вгепсе Тохі	cant	
Sample Date	e: 12 Jun-14 17:15	Ma	terial:	Potassium chlo	ride			Project:	225	81		
Receive Date	e: 12 Jun-14 17:15	So	urce:	Reference Toxi	cant							
Sample Age:	: NA (12.5 °C)	Sta	tion:	In House								
Comparison	Summary							· ·			77.614	
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Met	nod			
07-9213-4432	2 Fertilization Rati	9	0.25	0.5	0.3536	1.62%		Bon	erron	i Adj t Test		
Point Estima	ite Summary					· · · · · · · · · · · · · · · · · ·						
Analysis ID	Endpoint		Level	g/L	95% LCL	95% UCL	TU	Meti	nod			
00-0015-0401	l Fertilization Rate)	EC50	1.3	1.27	1.34		Tṛlm	med	Spearman-k	(ärber	
Fertilization	Rate Summary		,			· ·			***************************************			
C-g/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std	Err	Std Dev	CV%	%Effec
0	Lab Water Contr	4	0.998	0.996	0.999	0.99	1	0.00	25	0.005	0.5%	0.0%
0.25		4	0.983	0.979	0.986	0.97	0.99	0.00	479	0.00957	0.98%	1.5%
0.5		4	0.933	0.919	0.946	0.9	0.98			0.0359	3.85%	6.52%
1		3	0.927	0.922	0.931	0.92	0.94		667	0.0115	1.25%	7.1%
2		3	0	0	0	0	0	0		0		100.0%
4		4	0	0	0	0	0	0	·	0		100.0%
Fertilization	Rate Detail											
C-g/L	Control Type	Rep 1	Rep 2		Rep 4							
0 .	Lab Water Contr		1	1	0.99							
0.25		0.99	0.98	0.99	0.97							
0.5	•	0.98	0.94	0.91	0.9							
1 ·		0.92	0.94	0.92								
2		0	0	0								
4		0	0	0	0							·
Fertilization	Rate Binomials											
C-g/L	Control Type	Rep 1	Rep 2		Rep 4							
0	Lab Water Contr	•	100/10		99/100							
0,25		99/100	98/100	99/100	97/100							
0.5		98/100	94/100	91/100	90/100							
1		92/100	94/100	92/100								
2		0/100	0/100	0/100								
4		0/100	0/100	0/100	0/100							

CETIS QC Plot

Report Date:

Echinoid Fertilization Test Pacific EcoRisk Test Type: Fertilization Organism: Strongylocentrotus purpuratus (Purpl Material: Potassium chloride Protocol: EPA/600/R-95/136 (1995) Endpoint: Fertilization Rate Source: Reference Toxicant-REF

Mean:	1.318	Count:	20	-2s Warning Limit:	0.7075	-3s Action Limit:	0.5185
Sigma:	NA	CV:	36.50%	+2s Warning Limit:	2.454	+3s Action Limit:	3.349

Quali	ty Con	trol Data	3								
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2011	Dec	15	13:55	1.444	0.1269	0.2957			04-6051-4150	20-8134-1190
2	2012	Mar	8	16:22	1.61	0.2927	0.6453			05-0740-0748	15-5935-0686
3		Apr	6	15:30	1.823	0.5059	1.045			04-2265-9762	19-9125-4309
4			25	18:20	2.342	1.025	1.851			10-8393-5625	06-2730-7786
5		Aug	10	15:00	1.354	0.03623	0.08725			01-9226-6824	09-0663-0632
6		Oct	5	17:17	0.7751	-0.5425	-1.707			13-9975-3204	21-3214-1203
7			25	17:20	0.661	-0.6565	-2.218	(-)		15-6047-1276	05-8563-4140
8	2013	Jan	31	16:20	1,905	0.587	1.185			20-4482-2275	1 6-6771-7267
9		Apr	5	15:40	1.712	0,3942	0.8419			09-0614-8270	15-9800-9383
10		May	2	19:20	0.9268	-0.3908	-1.132			10-7105-5755	13-0792-4685
11			7	15:58	1.677	0.3595	0.776			00-1706-4139	06-3677-7130
12		Aug	28	17:02	1.284	-0.03339	-0.08255			06-2696-3137	00-3784-6188
13		Nov	6	14:36	1.438	0.1205	0.2815			14-3825-5642	11-2685-4555
14		Dec	5	15:50	1.101	-0.2167	-0.578			06-4350-3308	19-1664-9754
15	2014	Feb	7	14:20	1.09	-0,2274	-0.6094			11-6688-0585	16-9103-0015
16			10	18:00	1.348	0.03028	0.07307			02-9297-3328	14-6769-1689
17			18	15:47	1.496	0.1782	0.408			13-4044-9511	15-4518-0369
18			27	12:40	1.073	-0.2445	-0.6602			06-6744-5582	01-2061-9249
19			28	16:31	1.449	0.1314	0.3059			16-4152-6779	20-0611-0213
20		Apr	11	14:00	1.025	-0.2923	-0.8067			08-4721-0586	05-0420-5443
21		Jun	12	17:15	1.304	-0.01355	-0.03324			09-1969-9393	00-0015-0401

Echinoderm Fertilization Reference Toxicant Test Data Sheet

Client:	Reference Toxicant	Test Start Date:	6/12/14	
Test Material:	Potassium Chloride	Test End Date:	6/12/14	
Test Species:	D. excentricus - S. purpuratus (circle)	Enumeration Date:	4/13/14	
Test ID #	57613	Investigator:	AB	
Project #:	22581	-		

Concentration (g/L KCl)	Replicate	Number of Fertilized Eggs	Number of Unfertilized Eggs	Total Number of Eggs	Percent Normal Fertilization
	Α	100	D	100	100
Control	В	. 100	D	100	100
	С	100	Ь	100	100
	D	99		100	99
	A	99	1	100	99
0.25	В	98	2.	100	98
VL	С	99	1	100	99
	D	97	3	100	97
	A	98	2	100	98
0.5	В	94	4	100	94
	С	91	9	100	91
	.D	90	10	100	90
	A	92	8	100	92
1	В	94	6	100	9+
	С	30	70	100	30
	D	92	8	100	92
	Α	0	100	100	Ö
2	В	0	100	100	0
- [С	. 0	100	100	0
	D	81	19	100	81
	A	0	100	100	0
4	В	0	100	100	0
7	С	0	100	100	0
	D	0	100	100	Ö

Echinoderm Fertilization Reference Toxicant Test Data Sheet

Client:	Reference Toxicant	Test Start Date:	6/12/14	
Test Material:	Potassium Chloride	Test End Date:	6/12/14	
Test Species:	D. excentricus - S. purpuratus (circle)	Enumeration Date:	6/13/14	
Test ID #:	57613	Investigator:	XB	
Droigat #	22581			

Treatment Replicate		Number of Fertilized Eggs	Number of Unfertilized Eggs	Total Number of Eggs	Percent Fertilization
·	A	100	0	lov	100
Lab Control (Natural Sca	В	000	0	100	100
Water)	С	100	0	100	100
	D	99		100	99
Sperm Blank	A	0	100	100	0
(eggs only)	В	0	100	100	0
Lab Water Control	С	0	[00	100	Ó
	D	0	100	100	. 0
	A	0	100	100	0
Sperm Blank (eggs only)	В	0	100	100	0
4 g/L Control	С	ь	100	100	0
	D	D	100	100	0
	8				
	ije.				
	ΔĐ.				Juga (pagagagagagagagagagagagagagagagagagagag

AUG 1 1 2014

Echinoderm Fertilization Reference Toxicant Test Water Chemistry Data

Client:	Reference Toxicant	Organism Log#:	8.30) Age: N/A
Test Material:	Potassium Chloride	Organism Supplier:	Gutoff
Test Species	D. excentricus - S. purpuratus (c	ircle) Control/Diluent:	FSW
Test ID#:	57613 Project #: 22	2581 Test Date:	6/12/14 Randomization: -

Treatment (g/L KCl)	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	12.5	7807	1 1 4 4	33.(Date: 6/12/14
0.25	12.5	7.807	9.0	MF3336	1 8-11
0.5	12.5	7.68	9.0	33.9	New WQ: SVV
1	12.5	7.73	8.8	34.6	Innoculation Time:
2	12.5	7.74	8.7	35.7	Innoculation Signoff;
4	12.5	7.75	8.7	37.7	
Meter ID	82 M	OHIE	RDII	Ec04	

